
A Sample Accurate Triggering System for Pd and Max/MSP

Eric Lyon
Sonic Arts Research Centre

School of Music and Sonic Arts
Queen’s University Belfast

e.lyon@qub.ac.uk

Abstract

A system of externals for Pd and Max/MSP is described that
uses click triggers for sample-accurate timing. These exter-
nals interoperate and can also be used to control existing Pd
and Max/MSP externals that are not sample-accurate through
conversion from clicks to bangs.

1 Introduction
In the world of experimental electronic music, regular pul-

sation has often been frowned upon. During an exchange of
ideas between Karlheinz Stockhausen and several younger
electronic musicians (Witts 1995) Stockausen observed, ”I
heard the piece Aphex Twin of Richard James carefully: I
think it would be very helpful if he listens to my work Song
Of The Youth, which is electronic music, and a young boy’s
voice singing with himself. Because he would then imme-
diately stop with all these post-African repetitions, and he
would look for changing tempi and changing rhythms, and
he would not allow to repeat any rhythm if it were varied to
some extent and if it did not have a direction in its sequence
of variations.” Richard D. James responded from a different
perspective, ”I didn’t agree with him. I thought he should
listen to a couple of tracks of mine: ”Didgeridoo”, then he’d
stop making abstract, random patterns you can’t dance to.”

1.1 The Need for Better Timing
The same year this interview was published, I attempted

to use a pre-MSP version of Max to control a drum machine I
had built in Kyma. This experiment also resulted in ”random
patterns you can’t dance to,” since the Max event scheduler
at the time was good enough for certain kinds of algorithmic
music, yet not stable enough for techno music. Irrespective
of aesthetic issues, the precision required for creating techno
music can reveal limitations in some of our favorite computer
music systems that we might not have otherwise noticed. Ten

years later, the event schedulers for both Max/MSP and Pd are
much more stable, and are quite usable for some forms of mu-
sic based on regular pulsation. However, their performance is
still subject to variability based on factors such as the signal
vector size and competition from control-level events. Fur-
thermore, the scheduling systems of Max/MSP and Pd differ
such that the timing behavior of similar patches can perform
quite differently between the two systems. The Max/MSP
event scheduler is prone to permanently drift from a sample
accurate measurement of timing. The underlying Pd event
scheduler is sub-sample-accurate using 64-bit floating point
numbers to represent time, though apparently at the cost of
a higher likelihood of interruption of the audio scheduler, re-
sulting in audible glitches. In both systems temporal accuracy
of control-level events can drift freely within the space of a
signal vector.

1.2 The Problem with Small Time Deviations
Even when the amount of deviation from sample accuracy

is not clearly noticeable at a rhythmic level, it may still have
undesirable musical effects. For example, a pulsation may
feel not quite right when there are a few 10s of milliseconds of
inaccuracy in the timing from beat to beat. Smaller inaccura-
cies, though rhythmically acceptable, can still cause problems
when sequencing sounds with sharp transients, since changes
in alignment on the order of a couple of milliseconds will cre-
ate different comb filtering effects as the transients slightly
realign on successive attacks. This artifact is particularly in-
sidious since many users might not think to trace a spectral
effect to a system timing flaw. This and some other artifacts
have already been discussed in the context of MIDI band-
width limitations (Moore 1988). Thus low level temporal in-
determinacy subtly degrades not only the sense of machine-
generated precision required by techno, but also its seeming
opposite, namely the human performance expressivity which
is the main concern of Moore’s paper.



2 Sketch of a Solution
One way to sidestep the abovementioned problems is to

implement trigger scheduling at the sample level, rather than
at the event level at which bangs perform. This scheduling
must be built into every external that is to benefit from sam-
ple accurate triggering. In order to be of much use, such ex-
ternals must be able to easily synchronize with each other. I
have developed a system of externals based on click triggers.
The trigger signal contains a non-zero value at every sample
where a trigger is to be sent, and zeros at all other samples.
The value of the click trigger can convey one additional piece
of information to its receiver, such as desired amplitude.

3 Sample Accurate Metronomes
The centerpiece of the system is an external that coordi-

nates multiple metronomes. It is called samm˜ (for sample
accurate multiple metronomes). The first argument to samm˜
is the tempo in BPM, followed by a series of beat divisors that
each define the metronome speed for a corresponding outlet.
For example, the arguments 120 1 2 3 7 would activate four
outlets, all beating at 120 BPM, the first at a quarter note, the
second at an eighth note, the third at an eighth note triplet and
the fourth at a sixteenth note septuplet. Any of these param-
eters can have fractional components, and the beat divisors
may be less than 1.0, resulting in beat durations greater than a
quarter note. A click trigger from samm˜ is always a sample
with the value 1.0. The tempo can be varied during perfor-
mance while preserving proportional relations among all beat
streams.

3.1 Alternative Metronome Specifications
For convenience, several different methods are provided

for specifying metronome tempi. A new set of beat divisors
may be specified with the message ”divbeats.” Beat durations
may be specified directly in milliseconds with the message
”msbeats.” Beats may be specified in samples (useful if tempi
need to be built around a soundfile in terms of its length in
samples) with the message ”sampbeats.” Finally beat dura-
tions may be specified with ratio pairs (with the denominator
representing a division of a whole note) using the message
”ratiobeats.” The message ”ratiobeats 1 4 3 16 5 28” specifies
relative beat durations of respectively a quarter note, a dotted
eighth note and five septuplets. Fractions may be employed to
represent more complex ratios, though it is probably simpler
in that case to represent such ratios with decimal numbers and
use the ”divbeats” message.

4 Pattern Articulation
The beat streams from samm˜ can be patterned into ar-

bitrary rhythms with another external called mask˜. This
external stores a sequence of numbers, which are sent out in
cyclic series in response to click triggers. An initial series is
given as a set of arguments to mask˜. For example, the ar-
guments 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 could serve to define a
rhythmic pattern for a single instrument in a drum machine, in
this case perhaps a kick drum. Since zeros cannot trigger an
attack, any zero in a mask˜ pattern will convert an incom-
ing beat to a rest. Since any non-zero number can serve as
a trigger, the attacks need not all have value ”1” but could
specify different amplitudes instead. Multiple mask˜ in-
stances could control different parameters of the same event,
all sample-synched. Since mask˜ patterns can be of any size
(up to 1024 members), different sized mask˜ patterns will
cycle in and out of phase with each other, which is desirable
in a poly-metric scheme. It is also possible for two mask˜
patterns of the same size to be out of sync with each other if,
for example, one mask˜ was created later in the design of a
given patch. This loss of sync is usually not desirable. Thus,
mask˜ provides an option whereby the input is interpreted
not as triggers, but rather as index numbers used to iterate
through the mask˜ pattern. Using the same indexing clicks
(generated from another mask˜ of course) guarantees that all
patterns so controlled remain locked in phase. Any mask˜
external can hold a large number of different patterns which
may be stored and recalled during performance.

4.1 Sample Accurate Synthesizers
Sample accurate externals are provided for sound produc-

tion through both sampling and synthesis. adsr˜, an exter-
nal that is already part of my Web-published Max/MSP ex-
ternal set LyonPotpourri (Lyon 2003) is an ADSR envelope
generator. I have retrofitted adsr˜ to respond to click trig-
gers, interpreting the value of the click as the overall ampli-
tude of the envelope. Any software synthesis algorithm that
uses adsr˜ as an envelope can now be triggered with sample
accuracy.

4.2 Sample Accurate Samplers
A sample playback external called player˜ is provided,

which plays back a sample stored in a buffer (for Max/MSP)
or an array (for Pd). The two parameters to player˜ are
amplitude and playback increment, sent as signals to the first
and second inlets respectively. Amplitude is always a click
trigger. Under normal conditions, playback increment is a
signal that can be manipulated during performance. An al-
ternative static increment mode is provided, called by the



‘static increment’ message, in which the playback increment
is also received as a click trigger, which persists throughout
the playback instance without variation.

4.3 Polyphonic Nature of player˜
An inconvenient feature of groove˜, tabosc4˜, et.

al. is that if a note is currently active when a new playback
trigger arrives, the current note is instantly truncated which
often creates discontinuities. In player˜, all currently ac-
tive notes continue playing to the end of their buffers, even
as new attack triggers arrive. This is much more convenient
than having to create a poly structure for every member of a
drum machine. This is also the reason for the static increment
mode. In static increment mode multiple instances of play-
back can proceed at different playback increments, which is
quite handy for creating polyphony from a single sample. By
default, player˜ provides a maximum of 8 simultaneous
playback instances, which has been found to be sufficient in
most cases. This maximum can also be specified with an op-
tional creation argument to player˜.

Figure 1: A two voice drum machine.

5 Putting the Pieces Together - a Sim-
ple Drum Machine

Now let’s look at an example of how the externals de-
scribed thus far can be combined. (See Figure 1.) A samm˜
unit with a tempo of 120 BPM creates two beat streams, the
first dividing the quarter by two (eighth-notes) and the second
dividing the quarter by four (sixteenth-notes). Two player˜
objects play samples stored in two arrays. The bdbuf player˜
takes its metronome from the eighth-note beat stream. Its at-
tack/amplitude pattern is stored in the mask˜ object directly
above it. The increment is fixed at 1.0, taken from a sig˜
object. The output is scaled and sent to the DACs.

5.1 Polyrhythmic Sequencing
The hihat structure is slightly more complicated than that

of the bass drum. The beat stream is sixteenth-notes in all
cases. The duration of the attack/amplitude pattern is one
beat, rather than the four beats of the bass drum pattern. But
a second pattern with a periodicity of three sixteenth-notes
controls the increment from a second mask˜ object routed to
the second (increment) inlet of the hatbuf player˜. A third
rhythmic level is added as the hihat output is ring-modulated
by the sine wave output of an osc˜ object. The osc˜ is
controlled by a frequency pattern with a periodicity of five
sixteenth-notes. A custom object, clickhold˜is inserted
between the mask˜ and the osc˜ to sample and hold each
click as it comes in, resulting in the sustained frequency sig-
nal required by osc˜. As the three different patterns go in
and out of phase with each other, a composite 15-beat pat-
tern emerges. More complex polyrhythmic arrangements are
easily imagined, especially to control parameters of rich syn-
thesis algorithms, rather than the relatively few parameters of
sample playback.

5.2 You Call That a Drum Machine?
It is quite clear that the Pd patch shown in Figure 1 does

not look anything like a conventional drum machine. Of course
it is possible to use some graphical objects to wire up an inter-
face that that looks more like a drum machine and serves as a
front end, generating patterns for the mask˜ objects. But this
sort of tidy front end would also limit our possibilities. The
very looseness of the scheme of distributed mask˜ objects
suggest more fluid ways of thinking about drum patterns, and
manipulating them during performance.



6 dmach˜ - an Integrated Drum Ma-
chine External

The combined use of samm˜ and mask˜ can create arbi-
trarily complex rhythms. However certain kinds of rhythms
are somewhat inconvenient to specify under this model. Con-
sider a 4/4 bar pattern where the first beat is divided into
16th notes, the second beat into triplets, and the last two
beats divided into eighth-note quintuplets. A representation
of this pattern requires three different beat streams and three
different mask˜ objects. In order to address this problem, a
proof-of-concept external called dmach˜ has been designed.
dmach˜ contains an internal clock, and stores user-specified
patterns. The patterns are sent as outlet pairs; dmach˜ is
designed to send both attack patterns and increment patterns.
These patterns can be recalled at will during the performance.
The current pattern is looped until such time as a new one is
recalled. Patterns are stored with the ’store’ message and re-
called with the ’recall’ message. The current pattern is played
to completion before a new pattern is loaded, thus guarantee-
ing a sample-synced performance. The last outlet of dmach˜
sends a click at the start of each pattern playback, making it
easy for the user to build a sequencer for stored patterns.

Figure 2: A dmach˜ two voice drum machine.

6.1 Pattern Specification for dmach˜
Pattern specification in dmach˜ allows for arbitrary bar

sizes and arbitrary subdivisions within the bar. Patterns are
entered into dmach˜ with the ’store’ message. The first two
parameters are the pattern number and the number of beats in
the bar. The pattern number is an integer which will be used
to recall the pattern. The number of beats is defined as the
number of quarter notes in a bar. A specification of 4 creates
a 4/4 bar. A 3/8 bar would be specified with a bar duration of
1.5. Following are a series of beat patterns, each one targeted
toward a different instrument. The first parameter is the des-
ignated instrument. (Instrument 0 has its beat stream come
out of the first outlet, and its increment stream out of the sec-
ond outlet of dmach˜.) Next is a beat duration representing
a segment of the bar. If the entire beat pattern shares a single
subdivision of the beat, then this segment would simply be the
same as the bar duration. However since an arbitrary number
of segments can be specified (on condition that they eventu-
ally add up to precisely the bar duration), an arbitrary rhyth-
mic subdivision of the bar is possible, which could be quite
complex. Following the segment duration is the segment sub-
division factor. This subdivision must be an integer. Follow-
ing this is an attack pattern that must have the same number
of elements as the subdivision factor just specified. Follow-
ing the attack pattern is the increment pattern. The increment
pattern has the same number of elements as non-zero attacks
in the attack pattern. In other words, increments are specified
only for attacks, not for rests. Additional segments are identi-
cally specified until the duration of the bar is filled. This pro-
cess is repeated for every instrumental beat/increment stream
required for the pattern. Data is only required for instruments
that play in a given pattern. A pattern with no instrument data
functions as a bar of rest.

6.2 Usability of dmach˜
As mentioned above, dmach˜ is a proof-of-concept ex-

ternal. Given the intricacy of the data format, it is recom-
mended that a preprocessor be used to generate the data from
a more user-friendly interface than typing raw data by hand.
It is interesting to consider what might be a suitable graphical
interface to design patterns for dmach˜ though such consid-
erations are beyond the scope of this paper. The complexity
of pattern specification for dmach˜, while potentially bur-
densome, is also necessary in order to obtain full rhythmic
flexibility. Indeed this flexibility goes considerably beyond
what is possible with most commercial drum machines. How-
ever as mentioned above, the user can be buffered from this
complexity with a suitable interface, at the cost of some loss
of flexibility in pattern design. As can be seen in Figure 2,
the data complexity is localized in the ’store’ messages, so



the patching structure for wiring up a drum machine in Pd
with dmach˜ is somewhat simpler than in the earlier exam-
ple with multiple mask˜ objects.

6.3 Relative Inflexibility of dmach˜
While it is convenient to bind increment patterns to attack

patterns in dmach˜ this arrangement is somewhat inflexible.
The user might prefer to not control increment, or to con-
trol increment out of sync (or even randomly) in which case
the additional outlets for increment become superfluous, as
does the burden of specifying increment pattern in the ’store’
messages. On the other hand, one might well wish to simulta-
neously control parameters other than or in addition to incre-
ment, such as pan location, filter parameters, ring modulation
frequency or multiple synthesis parameters, if a software syn-
thesizer is being driven by a particular dmach˜ beat stream.

6.3.1 Increasing Flexibility for dmach˜

A simple method to increase the flexibility of dmach˜
would use the second beat stream outlet to send attack index
numbers which could then be used to control multiple mask˜
objects. This would give full flexibility, though the pattern
data would in most cases be spread over multuple mask˜
objects. In some cases this could be an advantage since in-
dividual data streams could be changed independently dur-
ing performance. A more complicated solution would allow
the user to specify the structure of a given dmach˜ object
through its creation arguments, such that a given beat pattern
could have an arbitrary number of outlets in addition to its
attack pattern outlet. This would keep all the pattern data in a
single ’store’ message. However the complexity of maintain-
ing data in this form, along with the possibility of eventually
bumping up against the hard limit on the number of atoms
allowed in a Max/MSP or Pd message box, might make this
solution unwieldy in practice. A sufficiently flexible graph-
ical interface that could create and manage the data in the
’store’ messages with arbitrary structure, might make this ap-
proach worth pursuing. As mentioned above, dmach˜ is still
a prototype object, which is not yet ready for prime-time.
Nonetheless dmach˜ does raise interesting questions about
structuring control data within the sample accurate triggering
system under discussion.

7 Interoperation with Non Sample Ac-
curate Externals

Many useful externals exist in Pd and Max/MSP which do
not currently provide a sample accurate response to triggers.
In order to utilize such externals in the system presented here,

they must be triggered with a bang synchronized to the in-
coming click trigger. In Max/MSP this can be done with the
edge˜ external which sends a bang on detecting a change
from zero to a non-zero value in an incoming signal. Since
edge˜ is only available for Max/MSP, a Pd external called
click2bang˜ has been designed to send out a bang in re-
sponse to an incoming click. The bang can only be accurate
to within the size of the signal vector. However the receiver
can be isolated in a sub-patch with a signal vector size set to
1 by the block˜ object, forcing that part of the patch back
to sample accuracy.

8 Clicks and Continuity
While click triggers are conceptually simple and thus easy

to work with in designing patches, they do have one disad-
vantage. Once sent there is no further information on the
progress of a triggered process until the next click is received.
For the types of data discussed here this is not a problem.
However certain continuous processes such as filter sweeps
might need to be correlated to the progress of a given time
span. For most practical purposes a line or line˜ ob-
ject triggered by an appropriate message (itself triggered by
a click2bang˜) will suffice. However it would be fairly
easy to design an external that outputs precise continuous data
in response to click triggers. We might call such an external
clickline˜ which would receive a target value and the
duration over which to interpolate from a stored initial value
to the target value, with the trigger and other input data sent
as clicks.

9 Conclusions and Future Work
The click trigger model has proved easy to implement,

useful for designing rhythmic patches in Pd and Max/MSP
and enables a degree of timing precision for rhythmic events
that is not generally practical for Pd and Max/MSP. I plan
to incorporate this model into future externals where appro-
priate. There has been increased interest in sample-accurate
timing within the Max/MSP community . Some more re-
cent Max/MSP object such as sfplay˜ and techno˜ em-
ploy sample accurate triggering, albeit using more compli-
cated methods than the click triggering system described here.
It would be nice to see a unified sample-accurate triggering
system employed to encompass the many Pd and Max/MSP
externals that could benefit from it, such as tabplay˜ and
groove˜. Third party developers of externals might also
find this model useful for any of their objects that involve
triggering. All of the work described here is based on steady
pulses. It would be interesting to develop metronomes that



implement arbitrary tempo curves, which would also output
click triggers. This would allow for sample-accurate explo-
ration of a very different class of rhythms. The sample accu-
rate trigger streams from dmach˜ could also be intercepted
by another external that imposes expressive timing curves or
rubato to explore different performance articulations of the
same rhythmic pattern.

10 Acknowledgements
An earlier version of this paper was presented at the 2006

Linux Audio Conference. Frank Barknecht provided useful
comments as reviewer for that conference. Peter Castine pro-
vided helpful information on numerical accuracy in C. Com-
ments from the anonymous ICMC reviewers lead to further
clarifications.

References
Lyon, E. (2003). LyonPotpourri - a Collection of Max/MSP Ex-

ternals. http://arcana.dartmouth.edu/˜eric/MAX.
Moore, F. R. (1988). The dysfunctions of MIDI. Computer Music

Journal 12(1), 19–28.
Witts, D. (1995). Advice to clever children/advice from clever

children. The Wire 141, 33–35.


