
FFTease and LyonPotpourri: History and Recent Developments

Eric Lyon

Institute for Creativity, Arts, and Technology

School of Performing Arts

Virginia Tech

ericlyon@vt.edu

Abstract

This paper curates two collections of externals

originally created for both Max/MSP and Pure Data

(Pd) at a time before the coding protocols of the two

programs started to significantly and increasingly

diverge. The current distributions of these two

packages for Pd were created to finally separate the

Max/MSP code from the Pd code. We will focus on

some of the functionalities of this software that are not

easily obtained by combining other Pd objects. Some

of the more recent tools are especially suited for

spatial composition, through arbitrary panning

schemes, or by spectrally fractionating an incoming

sound, for spectral diffusion to multiple loudspeakers.

Several different spectral processors are also

introduced.

Keywords

Spectral Spatialization, Spectral Processing, Computer

Music, Pure Data externals.

1 The Original Externals Packages

Coding for both FFTease and LyonPotpourri

commenced in 1999. FFTease was a collaboration

project between Christopher Penrose and the author

[1]. LyonPotpourri was written independently by the

author. FFTease was first released in 1999 and

LyonPotpourri was first released in 2006. Both

packages were initially written exclusively for the

Max/MSP platform. In 2003 I took over responsibility

for maintenance and development of FFTease. At

around the same time, at the invitation of Richard

Boulanger, I began writing about the process of

developing Max/MSP externals, a text that was

originally intended to be part of The Audio

Programming Book [2], but eventually became

Designing Audio Objects in Max/MSP and Pd [3]

once the size of the text could no longer comfortably

fit within The Audio Programming Book. As I began

working on my pedagogical text, I noticed that in

many cases, the “perform” loop, which is the DSP

callback routine executed on each signal vector, was

identical across Max/MSP and Pd. For example,

Figure 1 shows the perform routine for a

LyonPotpourri external called waveshape~.

This perform routine can work without

modification in both a Pd external and a Max 4

external. This great similarity between

Max/MSP and Pd “under the hood” was very

suggestive, and it seemed to me at the time that

a port of both FFTease and LyonPotpourri to Pd

would be both relatively easy, and of some

value in sharing the functionality of these

objects with the Pd community.

Figure 1 Perform routine for a waveshaping

algorithm that executes on both Max and Pd

1.1 Early Similarity of Max and Pd APIs

While the coding API for Max/MSP and Pd

externals was similar in the first decade of the

21st century, it was not identical. For example,

although the functionality of inlets and outlets

was similar, the implementation was different.

Figure 2 shows an initialization code routine in

which differences between Max/MSP and Pd

are managed through #ifdef statements. Before

adopting the somewhat crude solution of using

#ifdef statements to manage the differences

between Max/MSP and Pd, Flext [4], was

considered as potentially offering a somewhat

more elegant solution to cross-platform

development. However, in the end I decided not

 78

to use Flext, since I did not want to introduce another

layer of dependency to my code where it was not

strictly necessary.

Figure 2 An instantiation routine with code

divergence between Max/MSP and Pd

2 Max and Pd get a Divorce

Certain additions to Max/MSP functionality in the

Max 5 and Max 6 releases suggested the need to

revaluate the use of a shared codebase for FFTease

and LyonPotpourri. Max 5 introduced attributes, a

mechanism for maintaining state within an object

when a patch is saved and closed. Max 6 introduced

64-bit processing. The latter development resulted in a

different interface for the perform routine that would

require maintaining separate perform routines for

Max/MSP and Pd going forward. At that point it was

no longer trivially easy to keep the Max/MSP and Pd

versions of FFTease and LyonPotpourri unified, so the

next releases of FFTease 3.0 and LyonPotpourri 3.0

were separated into independent Max/MSP and Pd

versions, with all of the #ifdefs stripped out.

3 Origins of FFTease

FFTease started as a collaboration project with

Christopher Penrose in 1999 in order to facilitate

experimentation with spectral processing on the

Max/MSP platform. The development of the first

FFTease externals preceded the introduction by

Cycling ‘74 of the pfft~ system, which was introduced

to Max 4 in 2000. Pfft~ is a system that facilitates

exploration of spectral processing on Max/MSP. In

1999, it was still rather complicated to program FFT-

based processors using existing Max objects to

implement windowing, double buffering,

overlap-add, phase unwrapping, and oscillator

banks. But at the time, Penrose and I had

extensive experience writing Unix-based C-

code to implement all of those features, based

largely on code for the phase vocoder

introduced by F. Richard Moore in his book

Elements of Computer Music [5]. And both of

us had already released non-realtime FFT-based

software to run on Unix, PVNation in Penrose’s

case [6] and POWERpv in mine [7]. Coming

from this perspective, it seemed natural to write

several monolithic externals to accomplish

different FFT-based processing tasks that we

found interesting, but felt would be too arduous

to program in the visual data-flow programming

language of Max/MSP.

3.1 Real-Time Architecture for FFTease

Transitioning from the non-real-time world of

Unix software to the real-time environment of

Max/MSP was easy at first, largely because we

first went with a sub-optimal, but easy-to-code

solution. Implementation of spectral processing

generally requires an enveloped overlap-add

scheme, which requires some form of double

buffering. Other than the sampling rate, key

parameters for FFT-based processing include

the FFT size, and the overlap factor. For the

FFT size, higher values yield better spectral

resolution at the cost of higher CPU demand,

and lower time resolution. The overlap factor

determines how many samples to slide over the

input signal for each FFT frame, known as the

“hop size” and calculated as (N/o) where N is

the FFT size and o is the overlap factor. Higher

overlap factors reduce artifacts of windowing,

at the cost of proportionally higher CPU usage.

In the original architecture of FFTease, we set

the hop size equal to the signal vector size,

which considerably simplified real-time

calculations, since we could then calculate a

new FFT on each perform routine callback. The

overlap factor was simply the FFT size divided

by the signal vector size. This architecture had

the advantage of allowing us to quickly code up

real-time FFT-based processing in Max/MSP.

At the same time, an obvious downside to this

architecture tied performance of the objects to

the signal vector size. Changing the signal

vector size would change the behavior of the

object. Nonetheless, this design flaw remained

 79

in place until 2005 when I revised FFTease to

implement a double buffering scheme independent of

the signal vector size. This was during the time period

that I began to port both FFTease and LyonPotpourri

to Pd, so the Pd version of FFTease was always based

upon the later, improved Max version of FFTease.

3.2 Resynthesis options for FFTease

Most of the FFT operations performed on audio

signals are so-called “real” FFTs. This is because

audio signals are real rather than complex, so if

represented as complex numbers, the complex

component would always be zero. For FFT analysis of

real signals, Pd provides the rfft~ and rifft~ objects.

(fft~ and ifft~ are also provided for the analysis of

complex signals.) Although the input signal to an fft~

object is real, the output is complex, representing the

weights and phases of a harmonic series based on a

fundamental frequency of analysis that is the sampling

rate divided by the FFT size. This intermediary result

can be useful for cross-synthesis of two analyzed

signals, but more commonly another step is taken to

convert the complex numbers to a polar representation

of the amplitudes and phases for each harmonic. At

this stage, any number of FIR filters may be applied

by altering the amplitudes. Since the FFT analysis is

being applied constantly, the filters being applied

could be time varying. Once the amplitudes have been

suitably altered, the resulting spectrum is converted

from polar back to a complex format, and then

converted back to a real audio signal with the efficient

inverse FFT (IFFT), implemented in Pd by ~ifft.

In addition to the IFFT, which allows for amplitude

modifications of a spectrum, it is also possible to

make estimates of the instantaneous frequencies in

each bin, with a process called phase unwrapping. The

process is described in Moore’s book and is covered

in greater detail in Mark Dolson’s Phase Vocoder

Tutorial. [8] Once frequency modifications have been

made, it is generally necessary to implement

resynthesis with an oscillator bank, rather than an

IFFT. Most or all of this calculation could be done

using existing Max/MSP or Pd objects. However the

additional complexity would detract from the ease of

use that was intended from the start for FFTease. In

practice, the monolithic FFTease objects seem

beneficial both for the interesting spectral processing

that they provide, and the ease with which they can be

integrated into Pd patches.

3.2 FFTease and pfft~

In 2000, Cycling ‘74 introduced the pfft~ system.

This system wrapped up an FFT/IFFT with

windowed overlap-add. After absorbing the

implications of pfft~, Penrose and I rethought

FFTease in two ways. First, we thought that

there was a good chance the entire project

might be rendered obsolete, and be subsumed

by further spectral innovations from Cycling

‘74. Second, we decided to jump on the

bandwagon, and created a pfft~-centric version

of FFTease called FFTease Lite. For FFTease

Lite, we used the pfft~ interface, and only wrote

C c o d e t o p r o c e s s s p e c t r a i n t h e

amplitude/phase format. The advantage to this

approach is that FFTease Lite processors could

be stacked in succession without requiring

conversion back to the time domain, as would

be the case for the monolithic FFTease objects.

However pfft~ did not easily allow for oscillator

bank resynthesis. And the convenience of

monolithic objects remained compelling, so

FFTease Lite was scrapped. But the pfft~ idea

remains valid. It may seem strange to discuss a

Max-centric feature in a Pd-centric article, but

the pfft~ option can be utilized in Pd as well. In

the spectral chapter of “Designing Audio

Objects for Max/MSP and Pd,” [9] I showed

how to implement the pfft~ idea in Pd using a

few additional utility externals. All of those

externals have been added to LyonPotpourri, so

a bit later in this paper, we will show how to

use those externals to implement a pfft~-like

processor in Pd.

4 Working with FFTease

FFTease is a portmanteau word, combining

“FFT” with “ease,” two words that did not

ordinarily go together when Penrose and I

started writing the collection. However, the

monolithic structure of these externals makes

them quite easy to use. The main limitation is

that the user is limited to the algorithms we

chose to implement, whereas in the pfft~ model,

there is more flexibility to code up new spectral

algorithms. At the time that the first FFTease

objects were written, the monolithic approach

was not the norm. Rather there was a focus on

making smaller, more focused objects that

could be combined to create more complex

functionality. But a key design goal for FFTease

was to provide powerful new functionality,

while hiding most of the implementation

details, at the expense of some end-user

flexibility.

 80

4.1 Pvoc~

Figure 3 shows a simple Pd patch employing the

FFT object pvoc~. To simplify our examples, the input

signal to the FFTease processor is a non-band-limited

sawtooth wave. In more characteristic use cases, we

would process a more complex signal such as live

microphone input, or a sound file with rich spectral

features. Pvoc~ is largely based on the phase vocoder

algorithm described by F. R. Moore in Elements of

Computer Music. Since the object alters the

instantaneous frequencies of the harmonics of the

sound, an oscillator bank is required for resynthesis.

The primary function of pvoc~ is to change the pitch

of an incoming sound without altering its duration, as

would be the case when playing back a sound file at a

speed other than 1.0. This parameter is controlled by a

number send into the second inlet of pvoc~. A value of

2.0 raises the pitch of the input signal by an octave. In

order to function properly, pvoc~ only requires two

inputs: an input signal in its leftmost inlet, and a

transposition value in its middle inlet, which could be

either a float or a signal. It is difficult to imagine an

object that would be easier to operate.

Figure 3 Using the FFTease object pvoc~

4.1.1 Refinements to pvoc~

Pvoc~ takes as an optional argument the FFT size,

which must be a power of 2. If not provided, the

default FFT size is 1024. The overlap size is fixed at

8. Moore’s original phase vocoder algorithm provides

a threshold for analysis. This is an optimization

feature, to ameliorate the expense of an oscillator

bank, which is usually considerably more CPU-

intensive than an IFFT. By setting a threshold on a

per-frame basis, any harmonic with a weighting that

falls below the threshold is not resynthesized. We

have provided a further refinement, so that the

threshold is multiplied by the maximum

amplitude of each frame to generate that

frame’s synthesis threshold, making the

threshold adaptive. In Figure 3, the threshold is

set to 0.001 or roughly -60dB below the

maximum amplitude. Raising this threshold

will significantly reduce the CPU-load of the

object, but artefacts will quickly become

audible as different parts of the spectrum

rapidly cut in and out of the sound. These

artefacts might be musically useful in some

cases.

Another refinement to pvoc~ allows the user

to set both the low frequency and high

frequency of resynthesis. Use of these

parameters can dramatically reduce the CPU-

load of the object. This also introduces the

capability to apply a very sharp bandpass filter

to the output, extending the range of sonic

possibilities for the object. Finally, as a

convenience for the user, the entire object can

be muted, cutting off all FFT calculations. All

FFTease objects respond to the “mute” message

4.2 Pvwarpb~

Pvoc~ implements a completely standard use

of FFT processing. However the oscillator

resynthesis model used in pvoc~ can easily be

subverted to yield more interesting results than

simple transposition. Figure 4 shows the use of

FFTease external pvwarpb~. This external uses

an oscillator bank for resynthesis, but unlike

pvoc~, each individual oscillator can have a

d i ffe ren t t ranspos i t ion fac to r. These

transposition factors are exposed to the user

through a Pd array, into which the user can

draw new values directly. The message

“autofunc” generates a new line-based warp

function with minimum and maximum values

as argument. The warp function can be set back

to all 1.0 with the Pd message “const.” The

warp function can be accessed by any method

for addressing arrays that is available in Pd. In

addition to the warp function, the output can be

transposed, as accessed in the third inlet. The

synthesis threshold generator may be entered in

the fourth inlet. An offset to the warp function

may be set in the second inlet. This object can

powerfully bend spectra out of shape.

 81

Figure 4 Using the FFTease object pvwarpb~

4.3 Resent~

The last FFTease object that we will discuss in

detail is called resent~. Just as pvwarpb~ extends the

functionality of pvoc~, resent~ extends an FFTease

object called resident~ that implements arbitrary time

scaling of a spectrally sampled sound. Spectrally

sampling a sound consists of storing a series of short

time FFT frames. Since each frame could theoretically

be extended infinitely in time, a series of frames can

be resynthesized in any speed and order. Moving

linearly through a series of frames at half speed results

in doubling the duration of a sound without altering its

pitch. This is what residency~ does. Resent~ adds the

capability for each individual bin of an FFT to move

at a different speed, breaching the integrity of

individual FFT frames, an effect that cannot be

accomplished by residency~. For example, the high

part of a sound can be moving forward while the

lower part is moving backwards. Or each bin can

move at a different, random speed. Or some parts of

the spectrum could move at a glacially slow speed,

while others move blindingly fast.

The use of resent~ is shown in Figure 5. The

required first argument is the buffer size in

milliseconds. Following that are two optional

arguments, the FFT size, which defaults to 1024, and

the overlap factor, which defaults to 8. The message

“acquire_sample” is used to record the input sound as

a series of FFT frames. Once the recording is

complete, resynthesis is determined according to the

speeds of each individual bin. The speed and phase of

p l a y b a c k c a n b e s e t g l o b a l l y w i t h t h e

“setspeed_and_phase” message. More interestingly,

the speed of each individual bin can be set with the

“bin” message, or randomized within minimum and

maximum speeds with the “randspeed” command.

Figure 5 Using the FFTease object resent~

4.4 Other FFTease Objects

A full exegesis of the FFTease package is

beyond the scope of this paper. I will however

call attention to a few of the externals I consider

most interesting and unusual. Pvtuner~ maps

the frequency content onto a user-specified

scale, which is completely arbitrary, and can be

specified as a list of frequencies. A large

number of pre-defined scales are also available.

I used pvtuner~ in my 2001 composition Sacred

Amnesia [10] to tune an excerpt from the first

movement of Schoenberg’s Pierrot Lunaire, a

famous atonal composition, to A-major.

Dentist~ is an external that randomly designs

filters with spikes at particular frequencies, and

interpolates between these filters. Reanimator~

performs a kind of audio texture mapping,

where one sound file provides a bank of FFTs,

and then a second sound file is reconstructed by

real-time lookup of the FFTs from the first file.

There are many other idiosyncratic FFTease

externals to explore.

5 LyonPotpourri

LyonPotpourri was first released in 2006,

though many of its externals were created for

personal use considerably earlier. The

functionalities of the externals are considerably

more disparate than for FFTease, and as with

FFTease, a full discussion of all of the

LyonPotpourri externals is not possible within

the scope of this paper. There are three major

groups of externals within the collection. The

first group is organized around the principle of

sample-accurate timing. This group of externals

 82

has been previously discussed in [11]. We introduce

here, two recently added groups of externals focused

around first, a reconstruction of the Max pfft system,

and second, a group of externals intended for spatial

composition for arbitrary numbers of loudspeakers.

5.1 The pfft~ System and Pd

In 2000, Cycling ‘74 introduced a system called

pfft~ to Max 4. This system greatly simplified the

problem of implementing spectral processing, taking

care of enveloping, overlap-add, and conversion in

and out of the frequency domain. Had this system

been introduced a year earlier, it is possible that

Penrose and I would not have written FFTease. In its

essential working, an abstraction is produced that

incorporates pfft~ objects, and does further internal

processing in the frequency domain. This abstraction

is then introduced as an argument to the pfft~ object,

in which FFT size and overlap factor are specified as

arguments. When writing “Designing Audio Objects

for Max/MSP and Pd,” I needed to reconstruct the

functionality of pfft~ for Pd. The externals designed

for this need were introduced into LyonPotpourri 3.0

in 2016.

5.1.1 Max and pfft~

Figure 6 shows a typical pfft~ abstraction,

implementing a high pass filter. The amplitudes for all

frequencies below the selected bin are set to zero,

resulting in a very sharp filter. The cutoff frequency

for the selected bin is determined by the formula (b * r

/ N), where b is the bin number, r is the sampling rate,

and N is the FFT size.

Figure 6 A pfft~ abstraction

The trick here is to compare the current bin

number to the number sent in from the second

inlet. The comparison is done with the >~

object. The third outlet from fftin~ is a sample-

accurate index that counts the current bin from

zero. This index signal is an essential

component of the pfft~ system that allows for

bin-specific operations. Figure 7 shows the

deployment of this pfft~ abstraction in a Max

Patch.

Figure 7 Using a pfft~ abstraction in Max

5.1.2 Replicating pfft~ Functionality in Pd

In order to replicate the basic functionality of

pfft~, the following externals were introduced

to LyonPotpourri: windowvec~, cartopol~,

poltocar~, and vecdex~. These objects do not

need to be deployed in an abstraction, but can

be used directly in a Pd sub-patch. The FFT size

and overlap are determined in the sub-patch

with the use of the Pd object block~. The use of

these objects to replicate the functionality of the

Max pfft~ abstraction of Figure 6 is shown in

Figure 8. A Hann window is applied at both

input and output stages with the windowvec~

object. The index of the current bin is provided

by the vecdex~ object. An FFT size of 1024 and

overlap factor of 8 are set by the block~ object.

A rescale factor is derived for resynthesis, since

the output from the FFT/IFFT sequence is not

normalized. Finally, since Pd does not provide

signal comparison objects such as >~ the

LyonPotpourri object greater~ is employed. A

comprehensive set of signal comparison objects

would be a welcome addition to the core set of

Pd externals.

 83

Figure 8 A Pd sub-patch employing a pseudo-pfft~

structure

The enclosing patch for the FFT-based hipass filter

described above is shown in Figure 9.

Figure 9 The parent Pd patch for the sub-patch

shown in Figure 8

6 Generalized Panning Tools

Despite the existence of sophisticated algorithms for�
creating entire sound fields, such as Ambisonics,�
sometimes what is wanted is simple, equal-power�
panning across an arbitrary number of loudspeakers.�
This can be tedious to code in data-flow languages�
like Pd, and once coded, it is inconvenient to add or�
subtract channels. For this purpose, LyonPotpourri�
presents�npan~ which can pan a single input to an�
arbitrary number of output channels. The panning is�
controlled by a signal input that ranges from 0.0 to�1.0.

An extension of� npan~ is provided with� rotapan~,�
ZKLFK�FDQ�URWDWH�DQ�DUELWUDU\�QXPEHU�RI�LQSXW�FKDQQHOV�
WR�LWV�RXWSXW��

Finally, the object� shoehorn~ provides a

convenient way to� collapse a larger number of

channels to fewer� channels, which can be

convenient for listening� to a multichannel piece

in stereo, or mapping a�dense loudspeaker array

into a lower-order�array.

6.1 Spectral Spatial Diffusion

LyonPotpourri 3.0 introduced two externals,

splitspec~ and splitbank~, for spectral spatial

diffusion that I had first developed in 2003

during a residency at STEIM. They were based

on the short-lived FFT Lite model, so they did

not find a home in FFTease. And since there

were relatively few multichannel systems that

could deploy these externals at the time of their

creation, I didn’t get around to distributing them

until very recently. The basic idea for these

externals is to distribute an incoming spectrum

to a fixed number of derived spectra, which in

aggregate sum up to the source spectrum. In

this model, a coherent input spectrum such as

speech, which ordinarily would be perceived as

coming from a fixed, single location, could be

spectrally split, and then distributed to multiple

loudspeakers, resulting in a characteristic form

of auditory cognitive dissonance. A related

technique, called Spatio Operation Spectral

(SOS) synthesis was described in 2002 by

David Topper [12].

An interesting extension of spectral spatial

diffusion is to crossfade between two different

spectral diffusion patterns. This technique is

most effective on an input spectrum that is

either slowly evolving, or static. The sub-patch

for a typical use of splitspec~ is shown in

Figure 10.

Figure 10 a sub-patch using splitspec~

The imported pfft~ model is employed here.

The argument to splitspec~, which must be a

power of 2, determines the number of derived

output spectra. A windowed IFFT must be

performed on each output spectrum. The last

 84

two outputs, unused here, send the current spectral

diffusion mapping as a list, and the phase of

interpolation between current diffusion mappings. The

third and fourth inlets allow for real-time shifting of

both the diffusion mapping table, and bin mappings.

The main messages for splitspec~ are shown in Figure

11.

Figure 11 Message for splitspec~

The “scramble” message creates a new, random

distribution of bins to output spectra. Each spectrum

receives the same number of bin components, namely

(N/2 * x) where N is the FFT size, and x is the number

of derived output spectra. In the configuration shown

in Figure 10, each derived spectrum will have 64

amplitude/phase pairs copied from the original

spectrum. All other bin values will be set to zero. The

“ramptime” message sends the interpolation time in

milliseconds. When this is non-zero, each time a new

distribution is generated, the object will cross-fade

from the previous diffusion mapping to the new one.

The “squantize” message quantizes the spectra

according to its argument, which must be a power of

2. Each succeeding spectral frame receives a block of

bin data from the original spectrum, the size of which

is determined by the argument to “squantize.” The

“spiral” message distributes its bins sequentially to the

output spectra, starting from zero. The first derived

spectrum receives bin values from bin zero; the

second derived spectrum receives bin values from bin

1, and so forth. The “manual_override” message

allows the user to manually interpolate between the

current diffusion mapping and the previous mapping,

rather than an automated ramped transition, as is

normally employed.

6.1.1 Tuned Spectral Spatial Diffusion

The external splitbank~ is based on the splitspec~

model, but implements oscillator bank resynthesis.

This allows for the attractive possibility of tuning each

derived spectrum independently. The deployment of

this external in a sub-patch is shown in Figure 12.

Figure 12 Splitbank~ used in a sub-patch

The required argument for splitbank~

determines the number of output spectra, and

must be a power of 2. The first inlet receives

audio signal to be spatially diffused. The next N

inlets, where N is the number of output spectra,

control independent tuning factors for each

output spectrum. The next inlet allows for

control of the synthesis threshold, which

functions the same way as in pvoc~. The last

three inputs are equivalent to the corresponding

inputs for splitspec~. The first N outlets, where

N is the number of output spectra, are the

derived spectra as time-domain audio signal.

Splitbank~ is based on the earliest model of

FFTease, where the signal vector size is also the

hop size. The FFT size is then determined by (h

* o), where h is the hopsize, and o is the overlap

factor. With a preset overlap factor of 8, the

FFT size for the example shown in Figure 12 is

1024. The block~ object is used to set the local

signal vector size inside of the sub-patch. The

block~ overlap factor must be set to 1, since

overlap-add and windowing are implemented

within the splitbank~ object. In addition to the

global messages described for splitspec~, all of

the tuning factors can be set simultaneously

with a list message sent to the leftmost inlet

containing N transposition factors, where N is

the number of output spectra.

6.1.2 Extended Uses for Spectral Spatial

Diffusion

W h i l e t h e e x t e r n a l s splitspect~ a n d

splitbank~ can produce some quite interesting

effects through their basic functionality, they

also lend themselves to extended forms of

spectral spatial processing,, since their outputs

are multiple audio signals that could be

subjected to further signal processing prior to

being routed to multiple loudspeakers. For

example, the outputs could be run through

rotapan~, allowing for the entire spectrally

diffused sound field to be rotated around the

audience. The outputs could be independently

filtered, delayed, reverberated, or otherwise

 85

processed prior to playback. The outputs could be

further processed for binaural headphone listening, or

independently processed for presentation in an

Ambisonics-generated sound field.

7 Conclusion

We have highlighted certain aspects of FFTease and�
LyonPotpourri, two free, open-source collections of�
externals, in their most recent version for Pd. The�
source code for both collections can be downloaded�
from my Github page,� https://github.com/ericlyon.�
Given the large number of externals in each�
collection, a comprehensive tutorial was beyond the�
scope of this paper. Instead, we have focused on core�
functionalities of FFTease, and spectral spatialization�
capabilities recently added to LyonPotpourri. We have�
also presented the implementation of a�pfft~-like�
system for Pd in LyonPotpourri. It is hoped that this�
paper will increase the accessibility of FFTease and�
LyonPotpourri for Pd users, and will encourage�
increased experimentation with the externals found�
therein.

References

[1] E. Lyon and C. Penrose. “FFTease: A Collection of

Spectral Signal Processors for Max/MSP.” In

Proceedings of the International Computer Music

Conference, pp. 496-498. ICMA, 2000.

[2] R. Boulanger, V. Lazzarini, and M. Mathews, eds.:

The Audio Programming Book, MIT Press 2010.

[3] E. Lyon. “Designing Audio Objects for Max/MSP

and Pd.” A-R Editions, Inc. 2012.

[4] T. Grill. "flext - C++ layer for Pure Data &

Max/MSP externals." The second Linux

Audio Conference (LAC). 2004.

[5] F. R. Richard. Elements of computer music.

Prentice-Hall, Inc., 1990.

[6] C. Penrose "Extending musical mixing:

Adaptive composite signal processing." Int.

Computer Music Conf. Proc. 1999.

[7] E. Lyon. "POWERpv: a suite of sound

processors." Proceed ings o f the 1996

International Computer Music Conference.

The In te rna t iona l Computer Music

Association, 1996.

[8] M. Dolson. "The phase vocoder: A

tutorial." Computer Music Journal 10.4

(1986): 14-27.

[9] E. Lyon. “Designing Audio Objects for

Max/MSP and Pd.” A-R Editions, Inc. 2012.

pp. 211-243.

[10] E. Lyon. "Spectral Tuning." Proceedings

of the 2004 International Computer Music

Conference. 2004.

[11] E. Lyon. "A sample accurate triggering

system for pd and max/msp." Linux Audio

Conference 2006 Proceedings. 2006.

[12] D. Topper, M. Burtner, and S. Serafin.

" S p a t i o - o p e r a t i o n a l s p e c t r a l (s o s)

synthesis." Proceedings of the International

Conference on Digital Audio Effects,

Hamburg, Germany. 2002.

 86

