
Writing	 Externals	 for	 Max	 6	
	
Max 6 introduces 64-bit audio processing. Pre-existing audio externals built for Max
5 can be run under Max 6 without alterations. Pre-existing Max 5 code can be
compiled for Max 6 without alterations, and the resulting external will run on Max 6
and earlier versions. In order to make use of 64-bit processing, you will need to revise
your code slightly. This primarily involves writing a new 64-bit perform routine, and
a new dsp method bound to the message “dsp64” to call the 64-bit perform routine.
Once these revisions are in place, Max 6 will call your “dsp64” perform routine, and
earlier versions of Max will call your original perform routine.

Revising	 multy~	

We will use multy~ from chapter 3 to demonstrate porting from Max 5 to Max 6. At
the time of this writing a Max 6 SDK has not been publicly released. Therefore we
cannot provide an actual Max 6 project on the CD-ROM. Instead, the revised code
file “multy~.c” is included in this folder. When the Max 6 SDK is available, you can
simply move the revised multy~ code into a Max 6 project.	

Writing	 the	 64-‐bit	 Perform	 Routine	

We first refresh our memory of the Max 5 perform routine for multy~, shown in
Figure 1.

 1 t_int *multy_perform(t_int *w)
 2 {
 3 t_multy *x = (t_multy *) (w[1]);
 4 t_float *in1 = (t_float *) (w[2]);
 5 t_float *in2 = (t_float *) (w[3]);
 6 t_float *out = (t_float *) (w[4]);
 7 t_int n = w[5];
 8 while(n--){
 9 *out++ = *in1++ * *in2++;
10 }
11 return w + 6;
12 }
	
Figure 1 The Max 5 perform routine for multy~.

All signal vectors, along with the object, are taken from the *w integer array. The
order of these elements must correspond to the order in which they are sent in the
dsp_add() function call inside your dsp method. In line 11, make certain to return
the correct pointer, or the external will crash.

Now let’s have a look at the 64-bit version of this perform routine, shown in Figure 2.
	
 1 void multy_perform64(t_multy *x, t_object *dsp64,

double **ins, long numins, double **outs,
long numouts, long vectorsize, long flags,
void *userparam)

 2 {
 3 t_double *in1 = ins[0];
 4 t_double *in2 = ins[1];
 5 t_double *out = outs[0];
 6 int n = vectorsize;
 7 while(n--){
 8 *out++ = *in1++ * *in2++;
 9 }
10 }
	
Figure	 2	 The	 Max	 6	 64-‐bit	 perform	 routine	 for	 multy~.	
	
In line 1 of Figure 2, several new arguments are passed. These arguments provide
more structure than in the previous style (characteristic of Max 4, Max 5 and Pd),
where any mix of signal vectors, objects and other data could be passed in any order
on the integer array *w. The 64-bit perform routine distinguishes between inlets and
outlets, provides the signal vector size, and provides the number of signal inlets and
outlets. Since we are now doing 64-bit processing, the signal vectors are declared as
type	 t_double	 (which is defined as	 double	 in the new header file
“z_sampletype.h”).
	
Despite these changes, the DSP algorithm itself (in lines 7-9 of Figure 2) remains
exactly the same as for the older multy~ perform routine. However there is one thing
missing: We no longer need to return a pointer to the next address on the DSP chain.
Max 6 deals with signal routing behind the scenes, in order to facilitate smooth
transitions whenever the DSP configuration changes (thus no more glitches when
adding new audio objects to a patch). Since a pointer is no longer returned, you can
no longer crash Max/MSP by returning the wrong pointer. With nothing to return,
multy_perform64() is declared as type	 void rather than t_int*.	 	

Writing	 the	 dsp64	 Method	
	
The remaining steps are purely mechanical. We need to write a dsp64 method that
calls our 64-bit perform routine. To see the differences, compare the old dsp method
in Figure 3 with the new one in Figure 4.

In line 3 of both methods is a diagnostic post statement which will confirm that the
appropriate dsp method is called when the DACs are turned on. 	
	
	
	
	
	
	
	

1 void multy_dsp(t_multy *x, t_signal **sp, short *count)
2 {
3 post("Executing the 32-bit perform routine");
4 dsp_add(multy_perform, 5, x, sp[0]->s_vec,

sp[1]->s_vec,sp[2]->s_vec, sp[0]->s_n);
5 }
	
Figure 3 The Max 5 dsp method for multy~.
	
1 void multy_dsp64(t_multy *x, t_object *dsp64,

short *count, double samplerate, long maxvectorsize,
long flags)

2 {
3 post("Executing the 64-bit perform routine");
4 dsp_add64(dsp64, (t_object*)x,

(t_perfroutine64)multy_perform64,
0, NULL);

5 }

Figure 4 The Max 6 dsp64 method for multy~.

In line 1 of Figure 4, a few new arguments are passed to the dsp64 method. The
sampling rate and vector size are passed as arguments, which is more convenient then
extracting them from signal vector components, as we previously did in Max 5 code.
The object *dsp64 is actually the signal chain to which your object belongs. In Max
6, multiple signal chains are possible. Each top level Max 6 patcher has its own signal
chain, as does each instance of poly~ and pfft~. You need to pass the dsp64 signal
chain object to your 64-bit perform routine, but can otherwise safely ignore it. The
call to	 dsp_add64()	 passes the signal chain, your object (which must be cast to type	
t_object*), your 64-bit perform routine (cast to t_perfroutine64),	 and then any
flags, and any user parameters. We use	 0	 and	 NULL	 respectively for those parameters.	
	
In the dsp64	 method, individual signal vectors and the argument count are no longer
passed as parameters. This makes the coding easier, and eliminates a frequent source
of fatal bugs. Of course the treatment of signal inlets and outlets in the 64-bit perform
routine must still be consistent with how they were defined in the new instance
routine. This is, however, a much easier task than keeping track of the arbitrary
assignment of signal vectors in the old-style dsp method and perform routine.

All that remains is to bind the dsp64() routine to the message “dsp64” in	 main()	
and to provide function prototypes for both the dsp64 routine and the new perform
routine. The new binding is shown in Figure 5.
	
class_addmethod(multy_class, (method)multy_dsp64, "dsp64",

A_CANT, 0);

Figure 5 Binding the dsp64 method for multy~.

The file “multy~.c” in this folder contains complete code for the Max 6 version of
multy~.

Backwards	 Compatibility	 with	 Max	 5	
	
Max 5 does not implement the function	 dsp_add64(), so as soon as you introduce
this function in your dsp64 method, the resulting external will no longer load under
Max 5. This is not a problem if you are only targeting Max 6 as a platform. But in
order to compile an external that will load under both Max 5 and Max 6, a different
approach is required. In the code shown in Figure 4, line 4, your object is added to the
DSP chain with a call to	 dsp_add64().	 However,	 since	 the	 DSP	 chain	 has	 already	
been	 passed	 to	 your	 dsp64	 routine	 as	 the	 dsp	 chain	 object	 *dsp64,	 we	 can	 add	
multy~	 to	 the	 DSP	 chain	 by	 using	 the	 object_method()	 function	 to	 send	 the	
message	 “dsp_add64”	 directly	 to	 the	 dsp	 chain	 object.	 This	 is	 shown	 in	 line	 4	 of	
Figure	 6.	
	
1 void multy_dsp64(t_multy *x, t_object *dsp64, short *count,

double samplerate, long maxvectorsize, long flags)
2 {
3 post("Executing the 64-bit perform routine");
4 object_method(dsp64, gensym("dsp_add64"), x,

multy_perform64, 0, NULL);
5 }
	
Figure 6 Adding multy~ to the DSP chain with an object_method() call.
	

Buffers	 and	 Max	 6	
	
Currently,	 buffers	 in	 Max	 6	 contain	 32-‐bit	 floats,	 just	 like	 in	 Max	 5.	 This	 means	
that	 bed	 from	 chapter	 7	 will	 run	 perfectly	 in	 Max	 6	 without	 modification.	 Since	
bed	 is	 a	 non-‐real-‐time	 external,	 there	 is	 no	 need	 to	 even	 recompile	 it	 for	 Max	 6.	
But	 if	 you	 do,	 bed	 will	 still	 work	 with	 Max	 5,	 since	 there	 is	 no	 call	 to	
add_dsp64().	 In	 the	 event	 that	 a	 later	 version	 of	 Max	 introduces	 64-‐bit	 buffers,	
then	 bed	 would	 need	 to	 be	 revised,	 mainly	 by	 changing	 float	 variables	 to	
double.	
	

How	 64-‐bit	 is	 Max	 6?	
	
Audio	 processing	 in	 Max	 6	 using	 the	 new	 style	 of	 perform	 routines	 is	 done	 with	
64-‐bit	 precision.	 Older	 perform	 routines	 do	 their	 internal	 processing	 with	 32-‐bit	
precision,	 with	 conversion	 down	 to	 32	 bits	 at	 their	 signal	 inputs,	 and	 conversion	
up	 to	 64	 bits	 at	 their	 signal	 outputs.	 As	 we	 have	 seen,	 buffer	 operations	 are	 done	
with	 32-‐bit	 precision,	 and	 floating	 point	 Max	 messages	 remain	 limited	 to	 32-‐bit	
precision.	 All	 of	 this	 suggests	 that	 Max	 6	 represents	 a	 transitional	 stage	 of	 the	
program,	 which	 appears	 to	 be	 moving	 toward	 implementing	 a	 consistent	 64-‐bit	
signal	 path	 throughout	 the	 entire	 program.	
	
	

