
Writing	
 Externals	
 for	
 Max	
 6	

	

Max 6 introduces 64-bit audio processing. Pre-existing audio externals built for Max
5 can be run under Max 6 without alterations. Pre-existing Max 5 code can be
compiled for Max 6 without alterations, and the resulting external will run on Max 6
and earlier versions. In order to make use of 64-bit processing, you will need to revise
your code slightly. This primarily involves writing a new 64-bit perform routine, and
a new dsp method bound to the message “dsp64” to call the 64-bit perform routine.
Once these revisions are in place, Max 6 will call your “dsp64” perform routine, and
earlier versions of Max will call your original perform routine.

Revising	
 multy~	

We will use multy~ from chapter 3 to demonstrate porting from Max 5 to Max 6. At
the time of this writing a Max 6 SDK has not been publicly released. Therefore we
cannot provide an actual Max 6 project on the CD-ROM. Instead, the revised code
file “multy~.c” is included in this folder. When the Max 6 SDK is available, you can
simply move the revised multy~ code into a Max 6 project.	

Writing	
 the	
 64-­‐bit	
 Perform	
 Routine	

We first refresh our memory of the Max 5 perform routine for multy~, shown in
Figure 1.

 1 t_int *multy_perform(t_int *w)
 2 {
 3 t_multy *x = (t_multy *) (w[1]);
 4 t_float *in1 = (t_float *) (w[2]);
 5 t_float *in2 = (t_float *) (w[3]);
 6 t_float *out = (t_float *) (w[4]);
 7 t_int n = w[5];
 8 while(n--){
 9 *out++ = *in1++ * *in2++;
10 }
11 return w + 6;
12 }
	

Figure 1 The Max 5 perform routine for multy~.

All signal vectors, along with the object, are taken from the *w integer array. The
order of these elements must correspond to the order in which they are sent in the
dsp_add() function call inside your dsp method. In line 11, make certain to return
the correct pointer, or the external will crash.

Now let’s have a look at the 64-bit version of this perform routine, shown in Figure 2.
	

 1 void multy_perform64(t_multy *x, t_object *dsp64,

double **ins, long numins, double **outs,
long numouts, long vectorsize, long flags,
void *userparam)

 2 {
 3 t_double *in1 = ins[0];
 4 t_double *in2 = ins[1];
 5 t_double *out = outs[0];
 6 int n = vectorsize;
 7 while(n--){
 8 *out++ = *in1++ * *in2++;
 9 }
10 }
	

Figure	
 2	
 The	
 Max	
 6	
 64-­‐bit	
 perform	
 routine	
 for	
 multy~.	

	

In line 1 of Figure 2, several new arguments are passed. These arguments provide
more structure than in the previous style (characteristic of Max 4, Max 5 and Pd),
where any mix of signal vectors, objects and other data could be passed in any order
on the integer array *w. The 64-bit perform routine distinguishes between inlets and
outlets, provides the signal vector size, and provides the number of signal inlets and
outlets. Since we are now doing 64-bit processing, the signal vectors are declared as
type	
 t_double	
 (which is defined as	
 double	
 in the new header file
“z_sampletype.h”).
	

Despite these changes, the DSP algorithm itself (in lines 7-9 of Figure 2) remains
exactly the same as for the older multy~ perform routine. However there is one thing
missing: We no longer need to return a pointer to the next address on the DSP chain.
Max 6 deals with signal routing behind the scenes, in order to facilitate smooth
transitions whenever the DSP configuration changes (thus no more glitches when
adding new audio objects to a patch). Since a pointer is no longer returned, you can
no longer crash Max/MSP by returning the wrong pointer. With nothing to return,
multy_perform64() is declared as type	
 void rather than t_int*.	
 	

Writing	
 the	
 dsp64	
 Method	

	

The remaining steps are purely mechanical. We need to write a dsp64 method that
calls our 64-bit perform routine. To see the differences, compare the old dsp method
in Figure 3 with the new one in Figure 4.

In line 3 of both methods is a diagnostic post statement which will confirm that the
appropriate dsp method is called when the DACs are turned on. 	

	

	

	

	

	

	

	

1 void multy_dsp(t_multy *x, t_signal **sp, short *count)
2 {
3 post("Executing the 32-bit perform routine");
4 dsp_add(multy_perform, 5, x, sp[0]->s_vec,

sp[1]->s_vec,sp[2]->s_vec, sp[0]->s_n);
5 }
	

Figure 3 The Max 5 dsp method for multy~.
	

1 void multy_dsp64(t_multy *x, t_object *dsp64,

short *count, double samplerate, long maxvectorsize,
long flags)

2 {
3 post("Executing the 64-bit perform routine");
4 dsp_add64(dsp64, (t_object*)x,

(t_perfroutine64)multy_perform64,
0, NULL);

5 }

Figure 4 The Max 6 dsp64 method for multy~.

In line 1 of Figure 4, a few new arguments are passed to the dsp64 method. The
sampling rate and vector size are passed as arguments, which is more convenient then
extracting them from signal vector components, as we previously did in Max 5 code.
The object *dsp64 is actually the signal chain to which your object belongs. In Max
6, multiple signal chains are possible. Each top level Max 6 patcher has its own signal
chain, as does each instance of poly~ and pfft~. You need to pass the dsp64 signal
chain object to your 64-bit perform routine, but can otherwise safely ignore it. The
call to	
 dsp_add64()	
 passes the signal chain, your object (which must be cast to type	

t_object*), your 64-bit perform routine (cast to t_perfroutine64),	
 and then any
flags, and any user parameters. We use	
 0	
 and	
 NULL	
 respectively for those parameters.	

	

In the dsp64	
 method, individual signal vectors and the argument count are no longer
passed as parameters. This makes the coding easier, and eliminates a frequent source
of fatal bugs. Of course the treatment of signal inlets and outlets in the 64-bit perform
routine must still be consistent with how they were defined in the new instance
routine. This is, however, a much easier task than keeping track of the arbitrary
assignment of signal vectors in the old-style dsp method and perform routine.

All that remains is to bind the dsp64() routine to the message “dsp64” in	
 main()	

and to provide function prototypes for both the dsp64 routine and the new perform
routine. The new binding is shown in Figure 5.
	

class_addmethod(multy_class, (method)multy_dsp64, "dsp64",

A_CANT, 0);

Figure 5 Binding the dsp64 method for multy~.

The file “multy~.c” in this folder contains complete code for the Max 6 version of
multy~.

Backwards	
 Compatibility	
 with	
 Max	
 5	

	

Max 5 does not implement the function	
 dsp_add64(), so as soon as you introduce
this function in your dsp64 method, the resulting external will no longer load under
Max 5. This is not a problem if you are only targeting Max 6 as a platform. But in
order to compile an external that will load under both Max 5 and Max 6, a different
approach is required. In the code shown in Figure 4, line 4, your object is added to the
DSP chain with a call to	
 dsp_add64().	
 However,	
 since	
 the	
 DSP	
 chain	
 has	
 already	

been	
 passed	
 to	
 your	
 dsp64	
 routine	
 as	
 the	
 dsp	
 chain	
 object	
 *dsp64,	
 we	
 can	
 add	

multy~	
 to	
 the	
 DSP	
 chain	
 by	
 using	
 the	
 object_method()	
 function	
 to	
 send	
 the	

message	
 “dsp_add64”	
 directly	
 to	
 the	
 dsp	
 chain	
 object.	
 This	
 is	
 shown	
 in	
 line	
 4	
 of	

Figure	
 6.	

	

1 void multy_dsp64(t_multy *x, t_object *dsp64, short *count,

double samplerate, long maxvectorsize, long flags)
2 {
3 post("Executing the 64-bit perform routine");
4 object_method(dsp64, gensym("dsp_add64"), x,

multy_perform64, 0, NULL);
5 }
	

Figure 6 Adding multy~ to the DSP chain with an object_method() call.
	

Buffers	
 and	
 Max	
 6	

	

Currently,	
 buffers	
 in	
 Max	
 6	
 contain	
 32-­‐bit	
 floats,	
 just	
 like	
 in	
 Max	
 5.	
 This	
 means	

that	
 bed	
 from	
 chapter	
 7	
 will	
 run	
 perfectly	
 in	
 Max	
 6	
 without	
 modification.	
 Since	

bed	
 is	
 a	
 non-­‐real-­‐time	
 external,	
 there	
 is	
 no	
 need	
 to	
 even	
 recompile	
 it	
 for	
 Max	
 6.	

But	
 if	
 you	
 do,	
 bed	
 will	
 still	
 work	
 with	
 Max	
 5,	
 since	
 there	
 is	
 no	
 call	
 to	

add_dsp64().	
 In	
 the	
 event	
 that	
 a	
 later	
 version	
 of	
 Max	
 introduces	
 64-­‐bit	
 buffers,	

then	
 bed	
 would	
 need	
 to	
 be	
 revised,	
 mainly	
 by	
 changing	
 float	
 variables	
 to	

double.	

	

How	
 64-­‐bit	
 is	
 Max	
 6?	

	

Audio	
 processing	
 in	
 Max	
 6	
 using	
 the	
 new	
 style	
 of	
 perform	
 routines	
 is	
 done	
 with	

64-­‐bit	
 precision.	
 Older	
 perform	
 routines	
 do	
 their	
 internal	
 processing	
 with	
 32-­‐bit	

precision,	
 with	
 conversion	
 down	
 to	
 32	
 bits	
 at	
 their	
 signal	
 inputs,	
 and	
 conversion	

up	
 to	
 64	
 bits	
 at	
 their	
 signal	
 outputs.	
 As	
 we	
 have	
 seen,	
 buffer	
 operations	
 are	
 done	

with	
 32-­‐bit	
 precision,	
 and	
 floating	
 point	
 Max	
 messages	
 remain	
 limited	
 to	
 32-­‐bit	

precision.	
 All	
 of	
 this	
 suggests	
 that	
 Max	
 6	
 represents	
 a	
 transitional	
 stage	
 of	
 the	

program,	
 which	
 appears	
 to	
 be	
 moving	
 toward	
 implementing	
 a	
 consistent	
 64-­‐bit	

signal	
 path	
 throughout	
 the	
 entire	
 program.	

	

	

